DRD2 genotype-based variation of default mode network activity and of its relationship with striatal DAT binding.
نویسندگان
چکیده
The default mode network (DMN) comprises a set of brain regions with "increased" activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([(123)I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling.
منابع مشابه
Genetically Determined Measures of Striatal D2 Signaling Predict Prefrontal Activity during Working Memory Performance
BACKGROUND Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signalin...
متن کاملAltered Dopamine Synaptic Markers in Postmortem Brain of Obese Subjects
Dopaminergic signaling in the reward pathway in the brain has been shown to play an important role in food intake and the development of obesity. Obese rats release less dopamine (DA) in the nucleus accumbens (NAc) after food intake, and amphetamine stimulated striatal DA release is reduced in vivo in obese subjects. These studies suggest that DA hypofunction associated with hedonic dysregulati...
متن کاملIntegration of the Existed Knowledge on DMN: A Critical Review Study
The default-mode network (DMN) is one of the human brain’s networks activated in resting and self-referential thinking states. The nature of this network and its normal or abnormal changes has been the subject of various studies. The aim of this study was to systematical review and integrating the findings of that studies focused on the relationship of DMN with mental disorders and aging-induce...
متن کاملThe role of the striatal dopamine transporter in cognitive aging.
We examined the relationship of age-related losses of striatal dopamine transporter (DAT) density to age-related deficits in episodic memory and executive functioning in a group of subjects (n = 12) ranging from 34 to 81 years of age. The radioligand [(11)C]beta-CIT-FE was used to determine DAT binding in caudate and putamen. Results showed clear age-related losses of striatal DAT binding from ...
متن کاملDopamine Transporters in Striatum Correlate with Deactivation in the Default Mode Network during Visuospatial Attention
BACKGROUND Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Schizophrenia bulletin
دوره 39 1 شماره
صفحات -
تاریخ انتشار 2013